Numerical integrations over an arbitrary quadrilateral region

نویسندگان

  • Md. Shafiqul Islam
  • M. Alamgir Hossain
چکیده

In this paper, double integrals over an arbitrary quadrilateral are evaluated exploiting finite element method. The physical region is transformed into a standard quadrilateral finite element using the basis functions in local space. Then the standard quadrilateral is subdivided into two triangles, and each triangle is further discretized into 4 n right isosceles triangles, with area 1 2n2, and thus composite numerical integration is employed. In addition, the affine transformation over each discretized triangle and the use of linearity property of integrals are applied. Finally, each isosceles triangle is transformed into a 2-square finite element to compute new n extended symmetric Gauss points and corresponding weight coefficients, where n is the lower order conventional Gauss Legendre quadratures. These new Gauss points and weights are used to compute the double integral. Examples are considered over an arbitrary domain, and rational and irrational integrals which can not be evaluated analytically. 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Gauss-Radau and Gauss-Lobatto Numerical Integrations Over a Four Node Quadrilateral Finite Element

In this paper Gauss-Radau and Gauss-Lobatto quadrature rules are presented to evaluate the rational integrals of the element matrix for a general quadrilateral. These integrals arise in finite element formulation for second order Partial Differential Equation via Galerkin weighted residual method in closed form. Convergence to the analytical solutions and efficiency are depicted by numerical ex...

متن کامل

Stress Analysis of Skew Nanocomposite Plates Based on 3D Elasticity Theory Using Differential Quadrature Method

In this paper, a three dimensional analysis of arbitrary straight-sided quadrilateral nanocomposite plates are investigated. The governing equations are based on three-dimensional elasticity theory which can be used for both thin and thick nanocomposite plates. Although the equations can support all the arbitrary straight-sided quadrilateral plates but as a special case, the numerical results f...

متن کامل

A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom

An accurate three-dimensional numerical model, applicable to strongly non-linear waves, is proposed. The model solves fully non-linear potential flow equations with a free surface using a higher-order three-dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second-order explicit Taylor series expansions with adaptive time steps. The model is applic...

متن کامل

International Journal for Numerical Methods in Fluids

An accurate three-dimensional numerical model, applicable to strongly non-linear waves, is proposed. The model solves fully non-linear potential flow equations with a free surface using a higher-order three-dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second-order explicit Taylor series expansions with adaptive time steps. The model is applic...

متن کامل

A node-based element for analysis of planar piezoelectric structures

A novel node-based smoothing element for triangular and quadrilateral meshes is presented for static analysis of planar piezoelectric structures. In contrast to the smoothed finite element formulation that was based on sub-cells within an original quadrilateral element, this new method transforms a general original finite element mesh into a mesh of new smoothing cells individually associated w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 210  شماره 

صفحات  -

تاریخ انتشار 2009